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Mounting experimental and theoretical results indicate that neural systems are poised
near a critical state. In human subjects, however, most evidence comes from functional
MRI studies, an indirect measurement of neuronal activity with poor temporal resolution.
Electrocorticography (ECoG) provides a unique window into human brain activity: each
electrode records, with high temporal resolution, the activity resulting from the sum of the
local field potentials of ∼105 neurons. We show that the human brain ECoG recordings
display features of self-regulated dynamical criticality: dynamical modes of activation drift
around the critical stability threshold, moving in and out of the unstable region and equi-
librating the global dynamical state at a very fast time scale. Moreover, the analysis also
reveals differences between the resting state and a motor task, associated with increased
stability of a fraction of the dynamical modes.
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1. INTRODUCTION
The regulation of excitation and inhibition is an essential feature
of neural systems. Most theoretical and experimental explorations
rely on a static analysis of the balance of inhibitory and excitatory
inputs, or emphasize the attainment of this balance through slow
plastic changes (Song et al., 2000; Froemke et al., 2007; Gandhi
et al., 2008). The theory of self-regulated criticality, however, stipu-
lates that in order to fully realize its expressive potential, a complex
system must constantly, dynamically poise itself at the critical
point, i.e., at the boundary between stability and instability (Bak
et al., 1987), so that it can be maximally responsive to its input. In
the case of neural systems, the changing bombardment of inputs
additionally requires that this balance be attained at short time
scales, lest the overall activity becomes unstable or muted while
the system slowly adjusts itself.

Criticality is usually understood in a purely statistical sense, i.e.,
by identifying anomalous, heavy-tailed distributions (as opposed
to Gaussian or Poisson) of the relevant physiological or neu-
roanatomical variables. There are indeed many examples of sta-
tistical criticality in experimental neuroscience (Chialvo, 2010;
Mora and Bialek, 2011): neuronal avalanches (Beggs and Plenz,
2003; Haldeman and Beggs, 2005; Gireesh and Plenz, 2008; Fried-
man et al., 2012), spiking correlations in the retina (Schneid-
man et al., 2006; Hennig et al., 2009), and inter-area activa-
tion in functional imaging (Eguíluz et al., 2005; Fraiman et al.,
2009).

Nevertheless, neurobiology and biology at large abound with
examples of systems that are dynamically critical, i.e., that regulate
their dynamics constantly and rapidly, while they reside at the crit-
ical point. These systems include line attractors in motor control
(Seung, 1998; Seung et al., 2000) and decision making (Machens

et al., 2005), self-tuned Hopf bifurcations in the auditory periphery
(Choe et al., 1998; Camalet, 2000) and olfactory system (Freeman
and Holmes, 2005), as well as models of regulated brain criticality
(Bienenstock and Lehmann, 1999). Dynamical criticality, however,
has not been characterized for large, extended neural systems. It is
not evident that such systems should display this behavior, as crit-
ical dynamics may only be regulated locally, or conversely only be
revealed in large enough networks (Ohiorhenuan et al., 2010). For
this purpose, we used electrocorticography (ECoG) recordings, a
technique that provides a unique window into human brain activ-
ity (Miller et al., 2009a; Ritaccio et al., 2010). Recently, Raichle
and colleagues have shown that ECoG signals display power-law
statistics in the spectral content of the electrical potential time
series (He et al., 2010), although a different study found power-
law scaling without evidence for criticality (Miller et al., 2009a).
Such behavior of the ECoG voltage time series would be an indi-
cation of a system in a critical state, but does not provide further
insights as to possible mechanistic interpretations or functional
implications, and moreover, it does not imply that the system is
dynamically critical.

In order to explicitly estimate the properties of large-scale brain
physiology vis-a-vis dynamical stability, we analyzed large-scale
human ECoG array recordings, fitting the data to auto-regressive
models. As we demonstrate in the next sections, these recordings
exhibit robust and generic dynamical as well as statistical critical-
ity. The regulation of dynamical modes of activation takes place at
a fast time scale, resulting in the modes drifting around the critical
threshold as they move in and out of the unstable region. More-
over, the analysis also reveals differences between the resting state
and a motor task, associated with increased stability of a fraction
of the dynamical modes.
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2. MATERIALS AND METHODS
2.1. EXPERIMENTAL DATA
We analyzed ECoG recordings from 11 human subjects. The exper-
iments were performed with epilepsy patients at Harborview
Hospital in Seattle, WA (USA), according to an IRB approved
by the University of Washington. We provide here only a brief
description of the experimental procedure as the details have been
described previously (Miller et al., 2009c). ECoG potentials were
recorded from subdural electrode grids. Each electrode in the
array had a ∼5 mm2 platinum surface exposed to the subdural
brain surface. The grids [48 electrodes (6-by-8 array) in 2 patients
and 64 (8-by-8 array) in the rest] were implanted for extended
clinical monitoring and localization of seizure foci. Cortical poten-
tials were recorded at a sampling frequency Fs= 1000 Hz, with
respect to scalp reference and ground. The subjects performed a
finger-movement task. They were cued with a word displayed on a
bedside monitor to move fingers independently during 2 s move-
ment trials. They typically moved a finger 3–5 times during each
trial, but some trials included many more movements. A 2 s rest
trial (blank screen) followed each movement trial. There were 30
movement cues for each finger, and trial types were interleaved
randomly.

The ECoG signals were notch filtered at 60, 120, and 180 Hz and
then band-pass filtered (5–200 Hz) using a 6th-order Butterworth
filter.

2.2. DATA ANALYSIS
2.2.1. Auto-regressive model and eigenmode estimation
Properties of a natural system can be inferred from stochastic
time series models fitted to the experimental observations. Auto-
regressive models are one such family of models that have been
used in many different areas of natural and social science research.
They can be used to characterize oscillatory patterns and to make
predictions in complex systems. An auto-regressive model for the

variable y is defined as y(n) = Σ
p
i=1aiy(n − i) + e(n), where n

indicates the discrete time step of the series, p is the order of the
model, ai are the constant coefficient parameters, and e is a noise
term. In our case, we wish to model the joint recordings of all elec-
trodes, a multivariate time series. Therefore, the variables are now
represented by the column vector y, the coefficient parameters ai

are matrices, and the error vector e is a column vector. The state
of each variable depends on the previous values of all variables
(the evolution of each component can be correlated), in a manner
described by ai. Given an experimentally observed time series, it is
possible to fit the parameters of the auto-regressive model to it. By
doing so, the dynamics of the observed time series is then encoded
in the parameters of the model.

In this work we use auto-regressive models to describe the
dynamics of a highly non-linear system as the human brain. A
single auto-regressive model of any order would not, by definition,
describe the entire time series of ECoG potentials for the whole
experiment (10 min). Therefore, we use auto-regressive models of
order 1, AR(1), in relatively short time windows, within which the
system is assumed to be linear. The parameters of the model (the
coefficients of the matrix A= a1) are fitted locally in time to V(n),
the ECoG potentials time series. From each local AR(1) model
we derive the associated eigenmodes and their stability parameter,

defined as the absolute value of the eigenvalues of A. V(n) is a Ne-
dimension column vector, where Ne is the number of electrodes
and n is the time step number (n= t × Fs where t ). To estimate
the eigenmodes at time t = n/Fs we first isolate a 250 ms window
of V around t. This is the local time series to which we will fit an
AR(1) model, defined by:

xm+1 = A (t ) xm + em . (1)

In equation (1), x is the time series variable that evolves in dis-
cretized time steps m, A(t ) is the Ne×Ne coefficient matrix and e
is an uncorrelated noise vector. We estimate A for each time step
n using the algorithm of Neumaier and Schneider (2001) on over-
lapping windows shifted by 1 ms. Basically, an estimation of the
matrix A is obtained by casting the AR(1) model in the form of an
ordinary regression model and then estimating the parameters of
the regression model using a standard least square method. In the
Supplementary Material, we show that this procedure extracts the
expected eigenmodes of a well known critical dynamical system
undergoing a Hopf bifurcation.

The temporal dynamics of an AR(1) model is determined by
the eigenmodes of A (with eigenvalues λ= |λ|e i argλ). If |λ| < 1
the mode is stable and if |λ| > 1 the mode is unstable. Sta-
ble modes tend to damp and unstable modes tend to explode
(exponentially). Complex eigenvalues define a frequency of oscil-
lation (fλ= Fs|argλ|/(2π)) of the eigenmode. We use the con-
vention according to which −π < argλ < π, to ensure that a
pair of complex conjugate eigenvalues is associated with a single
frequency.

2.2.2. Avalanches
The ECoG potentials V(n) were converted to binary strings s(n),
so that each component of s(n) describes the activity pattern
in time of an individual electrode. If the absolute value of the
potential for an electrode is larger than a threshold at time step
n (|Vi(n)| >Vth), the string is deemed active and si(n)= 1. Oth-
erwise, si(n)= 0. Figure 3A illustrate the conversion from ECoG
potential to s on a single channel. We set the threshold at V th= 3.5
SD, where SD is the average standard deviation of Vi. However, sta-
tistical criticality is robust with respect to changes in the threshold,
as shown in Figure S2 in Supplementary Material. A raster plot
(Figure 3B-bottom) is a representation of the binary strings as a
function of time. The number of active electrodes at a given time
is Nact.

An avalanche is defined as an event that occurs when any
Nact > 0. The size of the avalanche is defined as the sum across
electrodes of Nact during the avalanche. The pair-wise correla-
tion coefficient between all pairs of electrodes is computed using
the binary string version of ECoG potentials (Schneidman et al.,
2006).

To reveal statistical criticality features from the data, we fit the
distribution of the number of active electrodes and the size of
avalanches to a discrete power-law distribution using the methods
described in (Clauset et al., 2009). A power-law distribution for a
discrete random variable x is

p (x) = Cx−α for x ≥ xmin (2)
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where C is a normalization constant. A maximum likelihood
method is used to estimate the scaling parameter α and the lower
bound xmin.

The power-law form of a distribution can be visualized as a
straight line in a log–log plot of the histogram. However, these
plots are usually noisy at the right-hand end of the distribution
because of sampling errors. An advantageous method of plotting
the data is to calculate a cumulative distribution function (New-
man, 2005). In this case, instead of plotting a histogram, we plot
the probability P(x) that x has a value greater than or equal to x :

P (x) =

∫
∞

x
p
(
x ′
)

dx ′ (3)

If p(x) is power law, then the cumulative distribution function
P(x) also follows a power law. Interestingly, P(x) is simply pro-
portional to the rank of x (Newman, 2005). This means that to
make a plot of P(x) we first sort the data in decreasing order of
frequency, number them starting from 1, and then plot their ranks
as a function of their frequency. All cumulative plots in this paper
were made in this way (Figures 3D,E and 4 and in Supplementary
Material).

2.3. SIMULATIONS
Two simulated signals were generated to validate the analysis
and the conclusions we derived from the data: a white noise
process and a Wiener process (random walk). In the white noise
case, the signal of each channel is independent and draw from a

Normal Distribution (mean= 0, SD= 1). In the case of a Wiener
process, the signal of each channel is obtained by integrating
the white noise signal, so that the Wiener signal at each chan-
nel is V Wiener

i (n + 1) = V Wiener
i (n) + ψi , where ψi is a normal

distributed random number (mean= 0, SD= 1). The important
difference between both simulated signals is in the power spec-
trum. White noise has a flat spectrum across frequencies while a
random walk generates noise with a S ∼ 1/f power-law spectrum
(see, for example Miller et al., 2009a).

3. RESULTS
The results illustrated in Figures 1 and 2, and Figures 3 and 4,
provide evidence that human ECoG potentials are dynamical and
statistically critical, respectively. Figures 5 and 6 illustrate how our
analysis can be used to distinguish between rest and task related
activity during a finger-movement task.

3.1. DYNAMICAL CRITICALITY
ECoG electric potentials typically vary with an amplitude in the
range of tens of µV. In Figure 1A we show the trace of an ECoG
potential recorded from one electrode during 28 s. Within this
period, subjects were cued to move different fingers in 2 s blocks
(shaded areas) separated by 2 s of rest. Figure 1B displays the
time evolution of the potential of all 64 electrodes on a window
of 250 ms; this time series is fitted with an AR(1) whose regres-
sion matrix is shown in Figure 1C. The eigenvalues of this matrix
are shown in Figure 1D as complex numbers, with the absolute
value corresponding to the stability parameter and the phase to the

FIGURE 1 | ECoG potentials were registered at 1 kHz during 10 min using
grids of 48 or 64 electrodes (Miller et al., 2009c). (A) we show the ECoG
potential of one electrode during 28 s. The color shading indicates periods in
which subjects were cued to move an individual finger. Cues were presented
in blocks of 2 s separated by 2 s blank screen periods. (B) Zoom-in

corresponding to 250 ms [rectangular area in (A)], showing all 64 electrodes.
(C) Regression matrix corresponding to the AR(1) model fitted to the time
series shown in (B). (D) Eigenvalues of the matrix shown in (C). Each
complex eigenvalue is characterized by a frequency and a stability parameter
(absolute value).
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FIGURE 2 | Dynamical criticality in human brain ECoG potentials. (A)
Absolute value of the eigenmodes (stability parameter) derived from the
estimated AR(1) models, plotted during 600 ms (black dots). The
eigenvalues are concentrated close to the critical value (blue line), an
evidence of dynamical criticality. (B) Zoom-in of the data A on a 30 ms

window. Each colored line corresponds to the evolution of a different
mode. Red arrows indicate bifurcation points: a complex mode gives rise
to two real new born modes (and vice versa). (C) Histogram of the stability
parameter for all subjects (red), and for two synthetic data (white noise
and random walk).

frequency; the eigenvalues tend to crowd near the critical line (red
dashed line), even for higher frequencies. This is further appreci-
ated in Figure 2A, where the evolution of the eigenvalues is plotted
over 600 ms, showing also how there are transient crossings above
criticality (blue line). Figure 2B is a zoom-in on a 30 ms window,
where eigenmodes were tracked individually, in order to display
the finer temporal structure of their evolution (see in Supplemen-
tary Material). The figure shows how the eigenmodes drift in and
out of the criticality zone, with their own dynamics; the instabil-
ities thus created are not long-lived because the system does not
explode in finite time.

To understand the significance of the crowding effect of the
eigenvalues, we compared their distribution in the experimen-
tal data against two simulated signals: a white noise process and
a Wiener noise process. In the case of the white noise, the fre-
quency spectrum is uniform, while for the Wiener process and
ECoG electric potentials the power spectral density has a power-
law form (Miller et al., 2009a). The red trace in Figure 2C shows the
histogram of eigenvalues for the original data over an entire exper-
iment (10 min) for all subjects. The green trace corresponds to the
eigenvalues reconstructed for a white noise signal, showing that
they are distributed over a wide but practically non-overlapping
range with respect to the original data. This is expected, given that

there are no temporal correlations in the white noise simulated
signals. Finally, the blue trace corresponds to the Wiener noise
signal. Given its definition, these simulated signals are expected
to display more temporal structure than white noise. Indeed, the
eigenvalues histogram has a peak near |λ|= 1 as the original data;
however, they do not show crowding close to the critical line, as
the distribution is much wider.

3.2. STATISTICAL CRITICALITY
We observed that ECoG potentials display statistical criticality, as
presented in Figure 3. The upper plot in Figure 3B shows the num-
ber of active electrodes, Nact during 1 s for a single human subject.
Figure 3B (bottom) shows a raster plot: each row represents the
activity of an electrode and a red dot indicate the time steps where
the electrode is active. Figure 3C shows that pair-wise correlation
between electrodes is relatively weak, with mode and mean less
than 0.1. While weak, the correlation is stronger than that expected
for a random sequence, and has a long tail. In fact, as shown in
Figures 3D,E, the data are statistically critical. In Figure 3D, we
plot the cumulative distributions of the number of electrodes that
participate in an avalanche and in Figure 3E, the cumulative dis-
tribution of the size of the avalanche (e.g., the sum over Nact).
Both distributions are power law, with exponents 3.1 and 2.7. In
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FIGURE 3 | Human brain ECoG potentials are statistically critical. (A)
The procedure used to obtain the binary version of the ECoG potential
avalanches is illustrated for one channel. On the top we show the trace of
the electric potential at one channel, V (t ) as a function of time during 1 s.
The lower black trace is the absolute value of the potential |V |. We use a
threshold Vth (red line) to convert this signal into a binary string s, displayed
in red in the middle row. Each red dot correspond to a time step of the
electric potential where |V |≥Vth (B) bottom: Raster plot of a discretized
version of the ECoG potential for an individual subject. Each red dot indicate
an active electrode: i.e., the absolute value of the ECoG potential for that
electrode (ordinate) is above a threshold at that time (abscissa). The
threshold was set to 3.5 SD, where SD is the mean standard deviation,
averaged over all electrodes. Top: the number of active electrodes (Nact) as a
function of time. An avalanche of activity is any activation event separated
by regions of Nact =0. (C) Histogram of the linear pair-wise correlation
coefficient (Pearson) calculated between all pairs of binary sequences
corresponding to the activation of each electrode. (D) The number of unique
electrodes that participate in the avalanche (1,. . ., Ne) are power law
distributed (red). The red line is a power-law fit of the data (shifted for
clarity). Both simulated signals do not show a power-law distribution. (E)
The size of the avalanches is also power law distributed (see Figure 4 to
see the results for all subjects).

contrast, the white noise and Wiener noise signals do not show
statistical criticality, demonstrating that the network cooperative
effects are significant. Statistical criticality is ubiquitous among
subjects (Figure 4). Although there are differences among sub-
jects, all distributions are long-tailed and power law in a certain
range. The red and blue dotted lines are power-law functions with

the fitted exponent for the distribution of the size of the avalanche
and the number of participating electrodes, respectively. The range
in which the distribution is power law is illustrated by the range of
the dotted line. In Table S1 in Supplementary Material we present
a summary of the results for all subjects.

3.3. CRITICALITY AND FUNCTION
The functional implication of dynamic criticality is based on the
concept that a system close to instability is more readily excited,
or susceptible to perturbations (inputs), than a stable one. To
demonstrate a functional role of criticality, we compared peri-
ods of rest (cue-off) with periods where the subjects were cued
with a word at the screen indicating the finger they had to move
(cue-on). We compare them by calculating the number of unsta-
ble modes (Nu), i.e., modes whose eigenvalues exceed the critical
line. We found that Nu is larger in cue-off than in cue-on periods
in all subjects (Figures 5A,B). The difference is small in magni-
tude (the relative difference is shown in Figure 5A) but significant
(p < 0.05 in 9 of 11 subjects) as shown in Figure 5C. Given that
the mean and the variance of the raw potential does not have
any significant difference between cue-on and cue-off periods
(see in Supplementary Material), we argue that the differences
are based only on a change in the dynamical criticality of the
system.

In contrast to what we observe with the dynamical behavior
between cue-on and cue-off conditions, power-law distributions
(characteristic of statistical criticality) does not seem to be dis-
criminative. While we found a difference in the total number of
active units between conditions for two subjects, this is not consis-
tent across the data set. Moreover, the two conditions show similar
distributions for the size of avalanches and the number of active
electrodes (in Supplementary Material).

The dynamical approach can provide further functional
insights. We depict in Figure 6 the result of analyzing the spa-
tial support of the eigenvectors, i.e., the absolute value of the
vector’s components laid on the two-dimensional ECoG grid.
Figure 6A depicts, for the 9 more unstable vectors, the relative
difference between the average for cue-on and cue-off conditions.
This analysis shows that the differences are sparse and spatially
structured, focused in sensorimotor and visual areas covered by
the ECoG array, which emphasizes the spatiotemporal nature of
the brain interactions involving a relatively simple task. The dif-
ferences between the conditions can be measured statistically. This
is represented in Figure 6B which shows a histogram of the eigen-
vector weight for one particular electrode of the most unstable
mode, for both conditions (p < 10−5, KS-test).

4. DISCUSSION
Structural stability of systems has been a basic tenet of non-linear
dynamics theory: the qualitative behavior (defined, for instance,
by an attracting fixed point or limit cycle) should not change
upon small perturbations; reciprocally, transitions between dif-
ferent dynamical states should be exceptional (Guckenheimer and
Holmes, 1983). This concept has deeply influenced systems neu-
roscience: one of the dominant paradigms is attractor neural
networks, in which computation is defined by the presence of
structurally stable fixed points, so much so that these are the
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FIGURE 4 | Statistical criticality is ubiquitous among subjects.
Cumulative distribution plots of the number of electrodes that participate
in an avalanche (blue) and the size of the avalanche (red) for every subject

subject. Although there are differences among subjects, all distributions
are long-tailed and power law in a certain range (indicated with dotted
lines).

only states where proper computation takes place (Amit, 1992).
Similarly, the theory of oscillatory neuronal ensembles implies
that brain computation is carried out by a limited number of
structurally stable modes so that, for instance, synchronization
can be attained in the γ-band, regardless of potential events taking
place in the rest of the spectrum (Rodriguez et al., 1999). From a
computational point of view, however, this framework is too lim-
ited, as it constraints dramatically the number of accessible states,
and precludes the possibility of implementing computations with

transient states, such as those produced by systems based on
heteroclinic orbits (Mazor and Laurent, 2005).

In the past decade, the use of ECoG recordings to under-
stand brain function has increased enormously, providing unique
insights to a large variety of human cognitive processes (Jacobs
and Kahana, 2010; Ritaccio et al., 2010). The main reason for
the success of ECoG recordings is that they measure human brain
activity with higher spatial and temporal resolution than any other
recording technique. An example especially relevant for the present

Frontiers in Integrative Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 44 | 6

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Solovey et al. Self-regulated dynamical criticality in human ECoG

FIGURE 5 |The number of unstable modes is larger in cue-off than in
cue-on periods for all subjects. (A) Relative difference (%) between the
mean number of unstable modes in cue-on and cue-off periods for all
subjects. The blue bars correspond to the% of unstable modes in the cue-off
condition and superimposed red bars correspond to the cue-on condition. (B)

Difference between the % of unstable nodes in cue-off and cue-on
conditions. This quantity is always positive, therefore there is always more
unstable modes in cue-off than in cue-on periods. (C) The differences in the
distribution of unstable modes is significant in 8 of 11 subjects. (p < 0.05,
Kolmogorov–Smirnov test, blue line: p=0.05).
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FIGURE 6 | Mapping of the eigenvectors. (A) Relative difference between
the mean eigenvector of cue-on and cue-off periods corresponding to the 9
most unstable modes for one subject (top left: most unstable; decreasing
order from left to right, top to bottom). Each red circle corresponds to a
component of the eigenvector. Its size and color represents the magnitude of

the difference between conditions (eigenvector weight). The maximum
difference is indicated below each subplot. The position of the red circles
correspond to the position on the brain of each electrode of the array for this
subject. (B) We show the eigenvector weight distribution for most unstable
eigenvector and the component with larger difference between conditions.

study is Miller et al. (2009c); the authors report individual digit
representation in adjacent ECoG electrodes (Miller et al., 2009c),
separated by 6 mm, speaking by itself of the high spatial resolution
of ECoG. This observation has a direct implication for our find-
ing, consistent with previously published reports (He et al., 2010),
of statistical criticality in ECoG. One possible simple explanation
for the presence of avalanches is that electrodes pick up the activ-
ity of static and isolated common sources, perhaps at different
cortical depths, as opposed to a collective process of critically reg-
ulated activity. While this null hypothesis cannot be completely
ruled out given the limitations of current recording techniques,
the spatial task-specificity of ECoG suggests that it is unlikely.
This is confirmed by our own results: the power-law distribution
of the number of participating electrodes in an avalanche implies

that there is a finite probability that an avalanche will involve,
for instance, half of all electrodes (Figure 3D, p∼ 10−3). Given
the restricted spatial extent of the eigenvectors associated with the
task (Figure 6A), we find the criticality hypothesis more plausible.

The dynamical criticality we observe in ECoG recordings
implies a balance between the stability of the system and its
susceptibility to internally or externally induced changes. In neuro-
dynamical terms, the functional advantage afforded by criticality
is easily understood. The modes represent the coordinated activity
of a large, distributed ensemble of neurons. Generalized instabil-
ity in these ensembles is undesirable, but a highly stable ensemble
would require a correspondingly strong perturbation to be mod-
ulated, and therefore be refractory to change. Under a local linear
approximation, the eigenvalues of the activation modes, while
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drifting, remain crowded near the critical line. This implies that the
brain has a mechanism to actively constrain these modes upon the
effect of external (i.e., sensorial input) and internal (e.g., plastic-
ity) agents. In this respect, the finding that the fixation condition
is closer to dynamical criticality than the task may be related to
the activity of the default mode network (Raichle et al., 2001;
Miller et al., 2009b). This finding is consistent with the idea that
brain activity is dominated by the superposition of a vast number
of ongoing processes, such as planning, memory encoding and
re-evaluation, and self-monitoring; in this interpretation, senso-
rimotor inputs and outputs, and even more demanding cognitive
tasks, are“ripples in a pond”(Arieli et al., 1996), producing changes
that are relatively small and fleeting, and contingent upon brain
state. In the broad sense, given the complexity and dimensionality
of the brain as a dynamical system, this must be true. However,
the dominant paradigm of the brain as a reactive system, con-
cerned mainly with representing the external world, will be hard
to relinquish until a new formal theory is developed.

The differences we find between the more unstable resting state
and the more stable task are consistently small, yet statistically
significant. This is reasonable to expect, in light of the “ripples”
hypothesis: while physically sizable, the finger task is computa-
tionally simple. As a proper task, it should also engage, however
briefly, a relatively stable activation mode, corresponding to the
observed periodic finger movement. Moreover, we find that the
dynamical modulation induced by the task is distributed over a
large area of the brain. This finding can be similarly interpreted:
while neurons encoding the movement of individual fingers may
be relatively localized, the dependences of the specific motor pat-
tern to be executed on several physical constraints (the position
of the arm relative to the body, whether the arm lies on a flat
surface, etc.) and cognitive states (the task paradigm, willingness,
volition, etc.), implies that task engagement is much more sophis-
ticated than merely the end effect of movement production in a
few muscles.

The evidence of statistical criticality in the size and number of
sites participating in avalanches is consistent with previous find-
ings in slice preparations (Beggs and Plenz, 2003; Haldeman and
Beggs, 2005; Gireesh and Plenz, 2008) and may or may not be
present in the power spectrum of the voltage time series of ECoG
recordings (Miller et al., 2009a; He et al., 2010). We found the dif-
ferences between task conditions in the distribution of avalanche
sizes to be insignificant, in contrast to their dynamical stability, a
finding that supports our claim that criticality in the brain must be
considered in a broader sense. This also provides insights for the
understanding of the relationship between event-related potentials
(ERPs) and criticality: while it may be possible to think of ERPs
as particularly large avalanches, and conversely of avalanches as a
succession of internally and externally triggered ERPs, our finding
rules out a simplistic explanation of statistical criticality as a direct
consequence of ERPs elicited by the task.

Dynamical criticality, in contrast, has not yet been described
in the spatial correlations of high temporal resolution, spatially
distributed, brain array recordings like ECoG, EEG, or multi-
electrode recordings. Moreover, the relationship between statis-
tical and dynamical criticality remains unclear, and the two are
often considered manifestations of the same phenomenon. But
this may not necessarily be so: perfectly deterministic and stable
dynamical process acting on a topologically critical tree (i.e., with
a scale-free distribution of the number of links per node) can nev-
ertheless generate a critical activation distribution. This example
is particularly relevant for neural systems, given the experimental
evidence of criticality in the topology of neural circuits (Ma’Ayan
et al., 2008), and the theoretical demonstration that synaptic time-
dependent plasticity can create these topologies (Fiete et al., 2010;
Kozloski and Cecchi, 2010).

One the reasons hindering our understanding of criticality is
that most models of statistical criticality lack smooth dynamics
and therefore resist analysis in terms of the qualitative theory
of dynamical systems, and such qualitative theory is well-suited
for the description of dynamical criticality. The network model
presented in Magnasco et al. (2009), based on anti-Hebbian
synaptic plasticity (Destexhe and Marder, 2004; Lamsa et al.,
2007), provides a possible bridge between these two notions of
criticality, and reproduces qualitatively the critical behavior of
the ECoG recordings. In this model, a network spontaneously
poises itself at a dynamically critical state by maintaining all its
eigenvalues hovering around the critical line; occasional excur-
sions into instability of some modes create avalanche-like bursts
of activity, which are themselves distributed as a power law.
The qualitative agreement between the Magnasco et al. network
model and our present empirical finding is encouraging, and pro-
vides a foundation for further exploration of widespread cortical
dynamics.

AUTHOR SUMMARY
We show that human brain ECoG recordings display features of
self-regulated dynamical criticality: dynamical modes of activa-
tion drift around the critical stability threshold, moving in and
out of the unstable region, and equilibrating the global dynamical
state at a very fast time scale. Moreover, the analysis also reveals
differences between the resting state and a motor task, the later
associated with increased stability of a fraction of the activation
modes.
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