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Abstract

Recently, a cellular automata model has been introduced (Phys. Rev. Lett. 87 (2001)

168102) to describe the spread of the HIV infection among target cells in lymphoid tissues. The

model reproduces qualitatively the entire course of the infection displaying, in particular, the

two time scales that characterize its dynamics. In this work, we investigate the robustness of

the model against changes in three of its parameters. Two of them are related to the resistance

of the cells to get infected. The other one describes the time interval necessary to mount

specific immune responses. We have observed that an increase of the cell resistance, at any

stage of the infection, leads to a reduction of the latency period, i.e., of the time interval

between the primary infection and the onset of AIDS. However, during the early stages of the

infection, when the cell resistance increase is combined with an increase in the initial

concentration of infected cells, the original behavior is recovered. Therefore we find a long and

a short latency regime (eight and one year long, respectively) depending on the value of the cell

resistance. We have obtained, on the other hand, that changes on the parameter that describes

the immune system time lag affects the time interval during which the primary infection

occurs. Using different extended versions of the model, we also discuss how the two-time scale
see front matter r 2004 Elsevier B.V. All rights reserved.
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dynamics is affected when we include inhomogeneities on the cells properties, as for instance,

on the cell resistance or on the time interval to mount specific immune responses.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The course of the human immunodeficiency virus (HIV) infection in patients is
characterized by the existence of two time scales that can be associated to clearly
distinguishable stages: the primary infection, which occurs over a short time (weeks),
and the latency, that takes a much longer time (years) and ends at the onset of the
acquired immunodeficinecy syndrome (AIDS)[1,2]. The primary infection is
characterized by a strong virus dissemination during the first weeks, which declines
and almost disappears after the emergence of the specific HIV immune response
[3,4]. During the following years a very low virus burden is detected. This period,
called latency period lasts, on average, from 2 to 10 (or more) years without any drug
therapy. In this stage the patient is usually asymptomatic, but there is a decrease in
the number of CD4þ T cells, which are the main target of the virus. When the T cell
counts drop to about 30%–20% of the counts in healthy individuals, the patient is
considered to have acquired the immunodeficiency syndrome. Without treatment he
(or she) eventually dies from opportunistic diseases [1,2].

The first immune response that appears after contamination is the innate immune
response, in which macrophages try to eliminate the virus. When the macrophage is
not able to accomplish such task, it breaks the antigen and becomes an antigen
presenting cell, exhibiting peptides of the virus in special receptors that may be
recognized by the CD4þ T cells. Once activated, these T helper cells produce
chemical signals (proteins) that activate the production of B and CD8þ T cells; the
first of which act on the elimination of the free virus and the latter ones on the
elimination of the infected cells. These specific responses are mounted on the
lymphoid tissues, which provide the adequate environment where different cells and
virus can interact quite strongly. According to estimates, only 2%–4% of the
immune cells are circulating in blood and lymph, the rest are mostly located in the
lymphoid tissue [5]. The immune cells circulate in blood and lymph during a time
scale of the order of minutes and take on the order of hours to pass throughout the
lymphoid tissues. This slow diffusion allows the mounting of specific responses to
different infections. Therefore, lymphoid tissues play an important role on the
development of the infection. However, in the case of the HIV infection, this spatial
localization has a negative side, due to the fast replication and reproduction rates of
the virus. Namely, the spatial localization that occurs in the lymph nodes contributes
to maintain the virus in the system, since the infection can spread more easily in this
environment.
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In the last decades, many mathematical models have been introduced to describe
the interaction between the HIV and the immune system and the development of the
disease [6–9]. Most approaches used ordinary differential equations. Although many
of these models succeeded to explain some aspects of the disease (e.g., changes in the
cell count during the latency period or under drug treatment), none of them was able
to describe the entire course of the infection, including its two characteristic time
scales, for a single parameter set . One of us [10] have recently proposed a model that
uses a discrete approach which can describe the entire time course of the HIV
infection. This model uses a cellular automaton formalism to describe the spread of
the infection in lymphoid tissues and reproduces the three-stage dynamics observed
in infected patients. The model shows that, during the primary infection, each
infected cell gives rise to a propagating wave of infection that eventually disappears.
The permanence of the virus in the system, on the other hand, is related to the
random formation of localized structures of infected cells that spread all over the
tissue trapping healthy cells and eventually destroying the tissue.

In this work, we study the robustness of this cellular automaton model against
variations of some of its deterministic parameters. In particular, we study whether
the two time scale dynamics persist when the parameters related to the resistance of
the cells and the time lag for mounting the specific immune response are varied. The
increase of the cell resistance, at any stage of the infection, leads to a reduction of the
latency period. Long latency periods are recovered by increasing the initial
concentration of infected cells. When varying the time interval, necessary to mount
the specific immune responses we observe that the two time scale behavior is
preserved. We have also studied the case in which we include inhomogeneities of the
cell properties. We show that the presence of inhomogeneities reduces the average
latency periods.

The paper is organized as follows: in Section 2, we introduce the model and its
main assumptions. In Section 3, we study the robustness of the model when two of
its parameters are changed. Since there is a drastic change of behavior when one of
these parameters is varied, we also study an extended version of the model in order
to analyze the transition from the long latency to the short latency regimes. In
Section 4 we study the role of the immune response time lag on the dynamical
behavior of the original model and we also analyze the case in which the infected
cells require different time lags to be detected by the immune system. We present our
concluding remarks in Section 5.
2. Cellular automata model

The main contribution of the cellular automata model of [10] has been to show
that the temporal pattern observed in HIV infected patients [1] may be explained by
the combination of the time lag necessary to mount the usual immune response to
any virus, the fast mutation and replication rates of the HIV and the spatial
localization that occur in the lymph nodes. In the model the mesh structure of the
lymph nodes is represented by a square lattice. This choice is based on the
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assumption that the cell–virus and cell–cell interactions take place mainly in the
voids of this structure when filled by a few cells. The model is then defined on a
square lattice of size L2. Each site on the lattice is occupied by a target cell which is
represented by a four-state automaton that describes the possible states in which
those cells may be found: healthy, infected A, infected B or dead. Healthy cells
represent CD4þ cells or macrophages which are the main target of the HIV. Infected
A cells are those cells which have been recently infected, carry a new virus strain and
have not been recognized by the immune system yet. Thus, they infect healthy cells
quite easily. The model assumes that the generation of the specific immune response
takes t time steps, after which infected A cells become infected B cells, with a lower
capacity of propagating the infection. At the next time step, infected B cells become
dead. The state of the cells in the lattice is updated at each time step in parallel
according to the rules specified below, with each time step corresponding to one
week. The Moore neighborhood (8 nearest-neighbors) is adopted to define the rules.
The initial configuration is mostly composed of healthy cells with a small fraction
PHIV ¼ 0:05 of infected A cells distributed at random on the lattice. This fraction is
chosen based on the findings that during the primary infection, only 1 in 102 or 103

cells harbors the viral DNA [11].
The updating rules are:
(1)
 A Healthy cell becomes infected A if it has at least either RA infected A neighbors
or RB infected B ones. Otherwise it remains healthy.
This rule takes into account the spread of the infection that may occur due to cell
to cell contact inside lymphoid tissues. In the original model, RA ¼ 1 and RB ¼ 4. In
Section 3 , we focus on this rule and explore an extension of it.
(2)
 An Infected A cell spreads the infection during t time steps and becomes infected
B.
The time lag t is the time that the immune system needs to develop a specific
response to a given antigen and may vary from 1 to 8 weeks. In the original model,
the authors used t ¼ 4 for all infected A cells. This means that the time to elicit a
specific immune response is always the same, since due to the high mutation and
replication rates of the virus, most likely each new infected cell carries a new strain of
the virus.
(3)
 An Infected B cell becomes a dead cell in the following time step.

(4)
 A Dead cell has a probability Prepl of being replaced by a new cell, in order to

mimic the incoming of new cells due to the circulation of blood and lymph. The
new cells have a probability Pinfec of being infected A and 1 � Pinfec of being
healthy.
The replenishment probability Prepl may vary from individual to individual.
However, in the original model, the authors chose Prepl ¼ 0:99 mimicking the high
ability of the immune system to replace the cells that are killed due to the infection.
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The introduction of new infected cells represents either cells that come from other
compartments of the immune system or the activation of quiescent infected cells. The
adopted Pinfec ¼ 10�5 is based on experimental findings that indicate that 1 in 104 or
105 cells in the peripheral blood expresses viral proteins [12].

As already mentioned, the model considers that each new infected cell carries a
new virus strain, a rule that takes into account the high mutation rate and fast
replication of the virus. Once inside the cell, the virus uses the cell machinery to
replicate, a process during which errors can occur. In the case of the HIV, it is
estimated that one mutation occurs per generation (on average, two generations per
week) [16,17]. We might expect, then, that the immune system is being constantly
stressed due to the fact that it needs to develop a new response to each new infected
cell. In the original model the time necessary to mount the specific immune response
to any viral strain is constant. In Section 4, we discuss the consequences of varying
the value of t.

The results obtained with the original model for the time evolution of the
concentration of infected and healthy cells are in excellent agreement with the
experimental data showing the observed three-stage dynamics [10]. Computing the
averages and dispersions of the concentrations obtained using over 500 different
initial conditions with the same set of parameters PHIV ¼ 0:05, RA ¼ 1 RB ¼ 4,
Pinfec ¼ 10�5, Prepl ¼ 0:99 and L ¼ 700, it may be observed that the primary
infection displays a small dispersion while the error bars are quite large for the
latency periods. Depending on the initial distribution of infected cells, the dispersion
of the latency period may vary between two and ten or more years. An interesting
result is that the entire course of the infection may be associated to the transient
behavior between the initial configuration and the steady state. The simulations of
the model also show that, while during the primary infection each infected cell gives
rise to a wave of infected cells that eventually vanishes, the persistence of the virus
during the latency period in the system may be associated to the formation of spatial
structures of infected cells that behave like a continuous source of infected cells.
Those structures grow and spread all over the lattice (at which point the system
achieves its steady state), trapping the uninfected cells. The authors of [10] correlate
such structures with aggregates of infected cells called syncytia which are observed in
in vitro experiments and are considered in the literature as a possible cause of the
virus permanence in the system [2]. In this case, the steady state of the model
corresponds to the destruction of the tissue which is observed in lymph node biopsies
of patients that have died from opportunistic diseases. It was later shown [14] that,
due to the geometrical features of such structures, the stationary concentrations of
healthy and dead cells can be approximated by 1=ðtþ 3Þ and the infected cell
concentration by ðtþ 1Þ=ðtþ 3Þ.

Recently, Figueiredo et al. [13] have investigated the role of the neighborhood and
of the dimensionality on the robustness of the model. They have shown that the
results for square and triangular lattices are qualitatively similar, but that for cubic
lattices the latency period becomes shorter, since the number of neighbors increases
and therefore the infection propagates faster. However, a rescaling of the parameters
would lead to the recovery of the long latency periods. They have also shown the
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robustness of the dynamics of the model with respect to changes of some its
stochastic parameters [18].

In the next sections we discuss, respectively, the role of the parameters associated
to the cell resistance and to the time lag necessary to generate the specific immune
response, during which each new infected cell is free to contaminate healthy cells
(also see Ref. [15]).
3. Cell resistance

In the model, infected B cells cause less harm to the system than infected A ones: it
is necessary to have a greater number of infected B than infected A cells in order to
infect a neighboring healthy cell. Infected B cells represent cells that are already
under the control of the immune system and, therefore are less harmful. It is not
surprising then, that any change in the value of RB does not affect the overall
features of the evolution of the infection, as shown in Fig. 1a. In fact, if we let RB

vary from 1 to 9, we observe the same two time-scale dynamics as in the original
model (RB ¼ 4). By increasing RB from 1 to 4, the average latency period varies from
5 to 8 years. By setting RB ¼ 9, we can analyze what happens when infected B cells
are completely harmless (since each cell has only 8 neighbors). Contrasting this case
with the case with RA ¼ RB ¼ 1 the average latency period doubles from 5 to 10
years. Therefore, increasing the cell resistance to infections by cells that are about to
die, RB, reduces the probability to form target structures and increases the average
latency period of the sample. For the sake of clarity, in Fig. 1(b) we show the
behavior of the three cell densities (healthy, infected and dead) as a function of time
for RB ¼ 1.

The parameter RA, however, plays a much more important role on the dynamics
of the infection. For instance, if we set RA ¼ 2 and keep all other parameters as in
the original model, we obtain the concentrations shown in Fig. 2 and the spatial
patterns of Fig. 3. RA ¼ 2 represents a situation where healthy cells need a higher
concentration of infected cells in their vicinity to get infected. Contrary to what we
could have expected, such increment of the healthy cells resistance does not increase
the latency period. Actually, the system is less effective in controlling the infection
and the latency period is considerably shorter than in the case with RA ¼ 1.
Somehow, increasing the resistance of healthy cells to get infected by infected cells
that are in the early stages of their infection favors the formation of aggregates of
infected cells, reducing the average latency period drastically. For RA ¼ 1, each
infected cell gives rise, almost simultaneously, to a single wave of infected cells that
eventually collide and vanish or, very rarely, gives rise to a target structure. In the
case of RA ¼ 2, only the occurrence of two infected cells in any given neighborhood
gives rise to such single waves. Therefore, on average, these waves will start at a
different time for each infected cell. This asynchrony of the wave initiation changes
the dynamics in a way that favors the formation of targets at the very beginning of
the infection (as shown in Fig. 3a). Therefore depending on the value of RA there are
two regimes: one with a long (RA ¼ 1) and one with a short (RA ¼ 2) latency period.
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Fig. 1. (a) time evolution of healthy cell densities for RB ¼ 1 (crosses), RB ¼ 4 (open diamonds) and

RB ¼ 9 (open circles) based on 50 distinct simulations. (b) density of healthy cells (open squares), infected

cells (filled circles) and dead cells (open triangles) for RB ¼ 1. The other parameters used in both figures

are the following: L ¼ 700, RA ¼ 1, t ¼ 4, PHIV ¼ 0:05, Pinfec ¼ 0:00001 and Prepl ¼ 0:99.
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Since the model is discrete in space and RA can only take on integer values, the
transition between these behaviors cannot be studied smoothly.

In order to study the transition from the RA ¼ 1 to the RA ¼ 2 regimes we decided
to redefine the first rule of the original model by introducing a new parameter that
allows us to tune the system into situations that are intermediate between both
regimes:
1.
 If a healthy cell has exactly one infected A neighbor, it has a probability P1 of
becoming infected A and (1-P1) of remaining healthy. A healthy cell becomes
infected A if it has two or more infected A or at least RB infected B neighbors.
Otherwise, it stays healthy.
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Fig. 2. Cell densities as a function of time: healthy cells (open squares), infected (A+B, filled circles) and

dead cells (open triangles). Average over 50 simulations. The parameters are the same used in Fig. 1 except

by the fact that RA ¼ 2 and RB ¼ 4.
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The new rule is such that the case P1=0 corresponds to RA ¼ 2 and P1=1 to
RA ¼ 1. When P1 takes on any value between these two limiting cases, RA ¼ 1 for a
fraction P1 of the healthy cells while RA ¼ 2 for the rest (1-P1). In Fig. 4a we show
the results for the mean latency period and standard deviation when P1 is varied
between 0 and 1, averaging over 100 samples. Note that when RA ¼ 2 for most cells
(small P1), the survival rate of the patient is smaller than one year. However,
increasing the fraction of RA ¼ 1 cells beyond 70% leads to a fast increase of the
average latency period which achieves its maximum at P1=1. In the inset of Fig. 4a
we show the time evolution of the infected A cells for three different values of P1.
While for P1 ¼ 1 the appearance of the target structures is quite random (leading to
different latency periods), an aspect which is reflected by the large error bars, in the
other cases the time evolution of the system is quite similar (small error bars) due to
the fact that those structures appear very early during the course of the infection (see
Fig. 3).

In order to test if it would be possible to recover the three-stage dynamics with
long latency periods using RA ¼ 2, we have varied the initial concentration of
infected cells. By doing this, we recovered the behavior observed in the original
model as shown in Fig. 4b. In contrast to what happens for PHIV ¼ 0:05, we reobtain
long latency periods for PHIV ¼ 0:35 and smaller P1. For instance, we obtain a mean
latency period of 2 years in Fig. 4a only for P1X0:90, while in Fig. 4b this is obtained
for P1 � 0:60. By increasing the amount of initial infected cells (PHIV ), the
probability of having two infected cells in the neighborhood of a healthy cell
increases, and a much larger amount of cells (compared to the case of PHIV ¼ 0:05)
will give rise to the single wave of infected cells recovering the kind of behavior that
leads to longer latency periods. The role of PHIV on the dynamics of the model (with
the modified rule 1) is summarized in Fig. 5.
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Fig. 3. Four snapshots of the spatial configuration of the lattice at different time steps, for the same

parameters used in Fig. 2. From (a) to (d) they correspond, respectively, to 5; 15; 20 and 30 time steps

starting from initial configuration. The color code used is: healthy cells in blue, infected A in yellow,

infected B in green and dead cells in red.
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4. Immune response time lag

The time lag needed to generate a specific immune response depends on the
antigen, and may vary from 1 to 8 weeks [10]. In the original model, this time lag t is
held constant and equal to 4, meaning that the immune system would behave in the
same way when developing the specific immune response to the new strains of the
virus. Therefore, one would be tempted to ask what happens if t is not equal to 4 but,
for instance, to any integer between 1 and 6. In this section, we explore the
consequences of such change by keeping the parameter fixed and by investigating the
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Fig. 4. (a): Latency period as a function of P1 with PHIV ¼ 0:05. Each filled triangle on the plot

corresponds to a mean latency period computed over 100 samples and the error bars are their standard

deviation. Inset: infected A cell densities as a function of time for P1 ¼ 0 (crosses), P1 ¼ 0:8 (open

diamonds) and P1 ¼ 1:0 (open circles); (b) The same as in (a) but with PHIV ¼ 0:35. The parameters are

the same as those of the previous figures.
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changes in the dynamics when considering that this time lag can vary from strain to
strain.

We show in Fig. 6a the density of healthy cells and in Fig. 6b the density of
infected A cells as a function of time for different fixed values of t. Note that t ¼ 4
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Fig. 6. Time evolution of healthy cell densities (a) and infected A cell densities (b) for t ¼ 1 (crosses), 4

(open diamonds) and 6 (open circles) averaged over 100 simulations, keeping the other parameters as in

the original work.
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corresponds to the original model [10]. The behavior is qualitatively similar for all
the cases shown, but both the primary infection duration and the maximum density
of infected A cells during the primary infection increase with t. When we add the
densities of infected A and B cells we observe the same trend, with the maximum
total density of infected cells decreasing by 30% when t is varied from 4 to 1. This
can be easily understood since it takes longer for infected cells to die and be replaced
as t is larger. Note that changes in the time lag does not affect the overall behavior of
the latency periods.

In order to investigate the behavior of the model when different time lags can
coexist we modified the second rule in the following way:
�
 The value of t, during which an Infected A cell will spread the infection is assigned
for each new infected cell according to a probability distribution. For the sake of
simplicity and in order to study a small perturbation of the original model we
define the probability distribution as follows: Pt¼3 ¼ 0:001, Pt¼4 ¼ 0:999, which
corresponds to 1 in 1000 new cells having a different time lag.

With this extended rule we have obtained that the mean latency period is
drasticaly reduced to one year as shown in Fig. 7. Note that also in this case the
latency period becomes shorter because a large number of targets appear soon after
the primary infection leading to the steady state very fast. This larger
number of targets is again due to the asynchrony of the cells that generate the
single waves.
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Fig. 7. Cell densities as a function of time: healthy cells (open squares), infected (A þ B, filled circles) and

dead cells (open triangles), when considering inhomogeneities on the generation of the specific immune

response to different strains according to modifications introduced in the second rule. We have not

changed the other parameters with respect to the previous choice.
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5. Conclusions

We have investigated the robustness of the Zorzenon dos Santos and Coutinho
model [10] under changes in the parameters RA and RB, which are associated to the
intrinsic cell resistance, and t, the immune response time lag necessary to develop the
specific immune responses. These parameters are related to the deterministic rules of
the model. The parameters associated to the cell resistance have different effects on
the evolution of the system. For instance, changes in RB modify the dynamics only
slightly, exhibiting long latency periods. These results indicate that the B stage of
infected cells is not essential to the dynamics since it works like a noise effect.
Actually it increases the probability of forming the target structures that leads the
system to its stationary state. On the other hand, RA plays a more important role. As
shown in Fig. 2, the latency period shortens from � 8 to 1 year when we turn RA

from 1 to 2, keeping all other parameters equal to those of the original model.
Modifying the first rule of the automaton we could study this transition in more
detail. The control parameter used was the probability P1. We found a range of P1

values in which there are long latency periods, in agreement with experimental
findings, showing the robustness of the model. The immune response time lag t did
not show a great influence on the overall dynamics, although the primary infection
gets longer if we increase t. Nevertheless, when we modify the second rule of the
automaton including the possibility of having a different time lag to generate the
specific immune response to a very small number of new strains, the latency period
was significantly reduced. This is due to the appearance of many targets on the
lattice, which can be understood as the consequence of an asynchrony effect, as
explained at the end of Section 4. From the immunological point of view, this means
that developing the same kind of response to any strain of the HIV makes the system
more efficient in dealing with the infection.
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[14] P.H. Figueirêdo, MSc. Thesis, Departamento de Fı́sica, Universidade Federal de Pernambuco, 2002.

[15] G. Solovey, Tesis de Licenciatura, Departamento de Fı́sica, Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires, 2003.

[16] M.A. Nowak, A.J. McMichael, Sci. Am. 273 (1995) 42.

[17] M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,

Oxford University Press, Oxford, London, 2000.

[18] R.M. Zorzenon dos Santos, in: N. kenkre, K. Lindenberg (Eds.), Modern Challenges in Statistical

Mechanics: Patterns, Noise, and the Interplay of Nonlinearity and Complexity, AIP, New York,

2003.


	On cell resistance and immune response time lag in a model for the HIV infection
	Introduction
	Cellular automata model
	Cell resistance
	Immune response time lag
	Conclusions
	Acknowledgements
	References


